36 research outputs found

    Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions

    Get PDF
    The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages

    Critical analysis and determination of the solubility limit of carbon in ferrite

    No full text
    National audienceIn spite of an extensive bibliography available, the solubility limit of carbon in ferrite is still uncertain (between 50 and 100 ppm at 600°C for example), and this is not sufficient for the improvement of steel processing. Therefore we have tried to establish as accurately as possible the solubility of carbon between 500 and 750°C in a low carbon aluminium killed steel using a thermoelectric power protocol, which enables to calculate the amount of free interstitials in a ferritic matrix from the amount of interstitials that segregate on dislocations after strain. The solubility limit has been determined at 2 ppm between 550 and 730°C, and described by the relation: C(p.c.wt) = 6.63 exp(-11.8 kcal/mol/RT). At a time when metallurgical phenomena are more and more simulated, we believe that a similar procedure should be used for other experimental studies providing basic data for modelling

    Genetic evidence in support of a shared Eurasian-North African dairying origin

    No full text
    The process by which pastoralism and agriculture spread from the Fertile Crescent over the past 10,000 years has been the subject of intense investigation by geneticists, linguists and archaeologists. However, no consensus has been reached as to whether this Neolithic transition is best characterized by a demic diffusion ( with a significant genetic input from migrating farmers) or a cultural diffusion ( without substantial migration of farmers). Milk consumption and thus lactose tolerance are assumed to have spread with pastoralism and we propose that by looking at the relevant mutations in and around the lactase gene in human populations, we can gain insight into the origin(s) and spread of dairying. We genotyped the putatively causal allele for lactose tolerance ( - 13910T) and constructed haplotypes from several polymorphisms in and around the lactase gene (LCT) in three North African Berber populations and compared our results with previously published data. We found that the frequency of the - 13910T allele predicts the frequency of lactose tolerance in several Eurasian and North African Berber populations but not in most sub-Saharan African populations. Our analyses suggest that contemporary Berber populations possess the genetic signature of a past migration of pastoralists from the Middle East and that they share a dairying origin with Europeans and Asians, but not with sub-Saharan Africans. [References: 59

    Linkage and Association Analysis of Angiotensin I–Converting Enzyme (ACE)–Gene Polymorphisms with ACE Concentration and Blood Pressure

    Get PDF
    Considerable effort has been expended to determine whether the gene for angiotensin I–converting enzyme (ACE) confers susceptibility to cardiovascular disease. In this study, we genotyped 13 polymorphisms in the ACE gene in 1,343 Nigerians from 332 families. To localize the genetic effect, we first performed linkage and association analysis of all the markers with ACE concentration. In multipoint variance-component analysis, this region was strongly linked to ACE concentration (maximum LOD score 7.5). Likewise, most of the polymorphisms in the ACE gene were significantly associated with ACE (P<.0013). The two most highly associated polymorphisms, ACE4 and ACE8, accounted for 6% and 19% of the variance in ACE, respectively. A two-locus additive model with an additive × additive interaction of these polymorphisms explained most of the ACE variation associated with this region. We next analyzed the relationship between these two polymorphisms (ACE4 and ACE8) and blood pressure (BP). Although no evidence of linkage was detected, significant association was found for both systolic and diastolic BP when a two-locus additive model developed for ACE concentration was used. Further analyses demonstrated that an epistasis model provided the best fit to the BP variation. In conclusion, we found that the two polymorphisms explaining the greatest variation in ACE concentration are significantly associated with BP, through interaction, in this African population sample. Our study also demonstrates that greater statistical power can be anticipated with association analysis versus linkage, when markers in strong linkage disequilibrium with a trait locus have been identified. Furthermore, alllelic interaction may play an important role in the dissection of complex traits such as BP
    corecore